Contents

RLHF

abstract

原因

过去几年里各种 LLM 根据人类输入提示 (prompt) 生成多样化文本的能力令人印象深刻。然而,对生成结果的评估是主观和依赖上下文的,例如,我们希望模型生成一个有创意的故事、一段真实的信息性文本,或者是可执行的代码片段,这些结果难以用现有的基于规则的文本生成指标 (如 BLUE 和 ROUGE) 来衡量。除了评估指标,现有的模型通常以预测下一个单词的方式和简单的损失函数 (如交叉熵) 来建模,没有显式地引入人的偏好和主观意见。

解决方案

如果我们 用生成文本的人工反馈作为性能衡量标准,或者更进一步用该反馈作为损失来优化模型,那不是更好吗?这就是 RLHF 的思想:使用强化学习的方式直接优化带有人类反馈的语言模型。

实现方法

RLHF 是一项涉及多个模型和不同训练阶段的复杂概念,这里我们按三个步骤分解:

  1. 预训练一个语言模型 (LM) ;
  2. 聚合问答数据并训练一个奖励模型 (Reward Model,RM) ;
  3. 用强化学习 (RL) 方式微调 LM。

Step 1. 预训练语言模型

选一个模型基座

或者对现有模型进行微调

/images/RLHF/20240707_2333314633.png

接下来,我们会基于 LM 来生成训练奖励模型 (RM,也叫偏好模型) 的数据,并在这一步引入人类的偏好信息。

Step 2. 训练奖励模型RM

RM 的训练是 RLHF 区别于旧范式的开端。这一模型接收一系列文本并返回一个标量奖励,数值上对应人的偏好

方法:微调或训练一个LLM

  1. 用端到端的方式用 LM 建模
  2. 用模块化的系统建模 (比如对输出进行排名,再将排名转换为奖励) 。这一奖励数值将对后续无缝接入现有的 RL 算法至关重要。

数据:

  1. 生成QA对:关于训练文本方面,RM 的提示 - 生成对文本是从预定义数据集中采样生成的,并用初始的 LM 给这些提示生成文本。
  2. 评价:关于训练奖励数值方面,这里需要人工对 LM 生成的回答进行排名。起初我们可能会认为应该直接对文本标注分数来训练 RM,但是由于标注者的价值观不同导致这些分数未经过校准并且充满噪音。通过排名可以比较多个模型的输出并构建更好的规范数据集。

对具体的排名方式,一种成功的方式是对不同 LM 在相同提示下的输出进行比较,然后使用 Elo 系统建立一个完整的排名。这些不同的排名结果将被归一化为用于训练的标量奖励值。

/images/RLHF/20240707_2333318630.png

接下来是最后一步:利用 RM 输出的奖励,用强化学习方式微调优化 LM。

Step 3. 用强化学习微调

长期以来出于工程和算法原因,人们认为用强化学习训练 LM 是不可能的。而目前多个组织找到的可行方案是使用策略梯度强化学习 (Policy Gradient RL) 算法、近端策略优化 (Proximal Policy Optimization,PPO) 微调初始 LM 的部分或全部参数。微调整个 10B~100B+ 参数的成本过高 。

  1. 问题描述

让我们首先将微调任务表述为 RL 问题。首先,该策略 (policy) 是一个接受提示并返回一系列文本 (或文本的概率分布) 的 LM。这个策略的行动空间 (action space) 是 LM 的词表对应的所有词元 (一般在 50k 数量级) ,观察空间 (observation space) 是可能的输入词元序列,也比较大 (词汇量 ^ 输入标记的数量) 。奖励函数是偏好模型和策略转变约束 (Policy shift constraint) 的结合。

  1. PPO 算法确定的奖励函数具体计算如下

将prompt 输入初始 LM 和当前微调的 LM,分别得到了输出文本 ,将来自当前策略的文本传递给 RM 得到一个标量的奖励 。将两个模型的生成文本进行比较计算差异的惩罚项,在来自 OpenAI、Anthropic 和 DeepMind 的多篇论文中设计为输出词分布序列之间的 Kullback–Leibler (KL) 散度的缩放,即 。这一项被用于惩罚 RL 策略在每个训练批次中生成大幅偏离初始模型,以确保模型输出合理连贯的文本。如果去掉这一惩罚项可能导致模型在优化中生成乱码文本来愚弄奖励模型提供高奖励值。此外,OpenAI 在 InstructGPT 上实验了在 PPO 添加新的预训练梯度,可以预见到奖励函数的公式会随着 RLHF 研究的进展而继续进化。

最后根据 PPO 算法,我们按当前批次数据的奖励指标进行优化 (来自 PPO 算法 on-policy 的特性) 。PPO 算法是一种信赖域优化 (Trust Region Optimization,TRO) 算法,它使用梯度约束确保更新步骤不会破坏学习过程的稳定性。DeepMind 对 Gopher 使用了类似的奖励设置,但是使用 A2C (synchronous advantage actor-critic) 算法来优化梯度。

/images/RLHF/20240707_2333313759.png

作为一个可选项,RLHF 可以通过迭代 RM 和策略共同优化。随着策略模型更新,用户可以继续将输出和早期的输出进行合并排名。

参考

关于 RLHF 的第一个项目,来自 OpenAI:

https://github.com/openai/lm-human-preferences

一些 PyTorch 的 repo: